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Abstract

Through-thickness measurements were recorded to experimentally
investigate the through-thickness flow and to validate a closed-form solution of
the resin flow during the vacuum-assisted resin-transfer molding (VARTM)
process. During the VARTM process, a highly permeable distribution medium
is incorporated into the preform as a surface layer, and resin is infused into the
mold, under vacuum. During infusion, the resin flows preferentially across the
surface and simultaneously through the thickness of the preform, giving rise to a
three-dimensional flow front. The time to fill the mold and the shape of the flow
front are critical for the optimal manufacture of large composite parts. An
analytical model predicts the flow times and flow-front shapes as a function of
the properties of the preform, distribution media, and resin. It was found that
the flow-front profile reaches a steady state shape that is parabolic in shape and
the length of the region saturated by resin is proportional to the square root of
the time elapsed. Experimental measurements of the flow front in the process
were carried out using embedded sensors to detect the flow of resin through the
thickness of the preform layer and the progression of flow along the length of
the part. The time to fill the part, the length of flow front, and its shape show
good agreement between experiments and the analytical model. The
experimental study demonstrates the need for control and optimization of resin
injection during the manufacture of large parts by VARTM.
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1. Introduction

The vacuum-assisted resin-transfer process (VARTM) process offers numerous
cost advantages over traditional resin-transfer molding (RTM) via lower tooling
costs, room-temperature processing, and scalability for large structures. Recent
advanced technology demonstrators such as the U.S. Navy’s Advanced Enclosed
Mast Sensor (AEM/S) System, the U.S. Army’s Composite Armored Vehicle
(CAV), and other Army programs on lightweight composite hull structures for
ground vehicles have shown the potential of VARTM technology for the low-cost
fabrication of large-scale structures. The VARTM process is also used
extensively in commercial applications such as bridge decks, rail cars, and
yachts.

The present study focuses on Seemann's Composite Resin Infusion Molding
Process (SCRIMP) [1]. In this VARTM-based process, a highly permeable
distribution medium is incorporated over a fiber preform as a surface layer. A
vacuum is applied on one side of the preform opposite the resin entry gate.
During infusion, the resin flows preferentially across the surface and
simultaneously through the preform thickness enabling large parts to be
fabricated using only vacuum. Resin flow in the VARTM process is three-
dimensional (3-D) through anisotropic porous media (i.e., preform). The lay-up
of the materials used in the process is shown in Figure 1. In this process, large
parts can be infused rapidly using a variety of resins including vinyl esters,
phenolics, and epoxies at room temperature under vacuum pressure.
Consequently, tooling costs and capital equipment investments are relatively
low. VARTM is a closed process offering environmental benefits through
reduced emission of volatile organic compounds (VOCs). In very large
composite structures, multiple inlet gates are required to ensure complete
wet-out of the part prior to gelation of the resin. Selection of distribution media,
preforms, and gate/vent locations are typically based on past experience for
similar applications. New applications where part thickness, resin properties, or
preform characteristics change require costly trial and error process
development. Hence, a fundamental understanding of the process physics and
associated process models needs to be established and experimentally validated.

Understanding the flow during the impregnation process provides insight into
tool design, gate, vent, and sensor placement that can affect part quality. In
addition, modeling and simulation of the flow can enable optimization of the
process design variables, such as the cycle time and the distance between resin
inlets as functions of the permeabilities of the distribution medium and the fiber
preform, resin viscosity, and preform thickness. An analytical model [2] has
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Figure 1. Schematic of the VARTM process.

been developed previously that captures the important process physics.
Experimental validation of this model prediction based on independent
measurement of input parameters was necessary.

The University of Delaware - Center for Composite Materials (UD-CCM)
VARTM test bed is a sophisticated experimental facility for monitoring and
controlling the flow of resin in the VARTM process. This test bed integrates
SMARTweave [3, 4], a system for 3-D flow and cure monitoring; a digital camera
for surface-flow monitoring; an electronic balance for measuring resin-flow rates;
a vacuum sensing and control system; automated actuators with sensor feedback
for multiple-gate injection; and a LABVIEW-based graphical interface that
maintains and controls the process.

In the present study, the test bed was used to experimentally investigate the flow
of resin through the thickness of the fiber preform during the VARTM
experiments. Experiments were conducted over a wide range of preform
thicknesses to assess the accuracy of the analytical model. SMARTweave was
used to detect the arrival of the resin at regular intervals through the thickness
and along the length of the fiber preform. The lengths and shapes of the flow



front and the arrival times of the resin through the thickness were recorded as a
function of preform thickness. The properties of the distribution medium and
the fiber preform were measured independently using the test bed in simple one-
dimensional (1-D) flow experiments.

In this report, a brief review of VARTM flow modeling, including the analytical
model is presented. Details of the VARTM test bed and the experimental
procedures are described. Finally, the model predictions are compared with the
experimental results and discussed.

2. VARTM Process Modeling

The flow of resin through porous media such as fiber preforms and resin
distribution media is governed by Darcy’s Law:

K
u=—-.DVP.
n 4))

Here u is the Darcy’s velocity, which is defined as the total flow rate per total
cross-sectional area; K is the permeability tensor, which characterizes the ease of
flow through the fiber perform; and p is the viscosity of the resin. This, when
coupled with the continuity equation for incompressible flow, gives the Laplace
equation for the fluid-pressure field inside a region permeated by the fluid.

K
V '(—II-.VP) =0. )

The flow simulations can be either two-dimensional (2-D) or 3-D. In 2-D flow
modeling [5-7], the flow of resin through the thickness is considered uniform,
and the finite element discretization is applied along the other two directions.
One such simulation is Liquid Injection Molding Simulation (LIMS), which is
based on the finite element/control volume approach [8]. In 2-D simulations,
only the permeabilities in the plane of interest are required. In 3-D simulations
[9], the pressure and flow in all three directions is solved, and a 3-D permeability
tensor is required. Resin Infusion Process Simulation (RIPS) is one such 3-D
simulation based on finite element methods without the use of the control
volume approach [10]. Usually, the geometry, the material parameters, and the
position of resin inlets and outlets are specified before the filling simulation is
carried out.

Closed-form analytical solutions have also been derived for the resin flow under
simplifying assumptions and for simple geometries and preforms. These




solutions shed light into the role of various process variables, such as vacuum
levels, material properties, and preform thickness, and their interactions during
processing. Indeed, a closed-form solution of the resin flow during the VARTM
process not only enables parametric studies, optimization, and reduction of
computational expenses of full-scale simulations, but also offers insight into
scalability by identifying appropriate distribution media and resin injection inlet
spacings for a required preform material, resin system, and the part dimensions.

3. Review of Analytical Model

In earlier work, a closed-form solution for the flow of resin in VARTM process
was derived [2]. The analytical solution for 2-D porous media focuses on a
representative cross section (x-y plane shown in Figure 2) consisting of the
distribution layer (the high permeability material) and the structural layer (the
preform material). It is assumed that the flow is well developed and can be
divided into two regimes: a saturated region with no through-thickness flow
and a flow-front region where the resin is infiltrating into the preform from the
distribution medium.
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Figure 2. Schematic and nomenclature used for the analytical model.

As illustrated in Figure 2, the lay-up of materials is modeled as two distinct
layers of permeable materials. The distribution layer (layer 1) is much thinner
than the structural layering (layer 2), such that h; << h, where k; and h; are the
respective thicknesses of the two layers. The flow front in the distribution layer
is considered uniform (i.e, no gradients in the thickness direction) as the




permeability is isotropic for the distribution layer. The permeability of the
distribution layer is K along and across the flow direction, and the
permeabilities of the structural layer are Kz and Ky in the x and y directions,
respectively. The resin viscosity is 4. Vacuum is applied to the preform, and the
resin flow is driven by the constant pressure difference, Po, between the pressure
at the inlet, which is atmospheric pressure, and the vacuum pressure at the flow
front.

In the saturated region, the flow is 1-D with Darcy’s velocities U; and U; in
layer 1 and layer 2, respectively. The length of this saturated region is D, and the
pressure at the boundary with the flow region is assumed to be Pp. The second
region, illustrated in Figure 3, is the flow-front region where there is transverse
flow from the distribution layer to the structural layer. The flow-front region of
length d is assumed to maintain its shape, given by h(x), and advances with a
uniform horizontal velocity of Ur. This is the observed velocity of the resin and
not the Darcy’s velocity. The transverse velocity of resin infiltration from the
distribution layer into the structural layer is 112y The horizontal velocity in the
flow-front region in the distribution layer is denoted by wui« at the distance
x=(D +d) =P1Ur

Flow front region
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Figure 3. Mass conservation at the flow front.

The flow-front region is assumed to be fully developed and moves with a
uniform velocity. The law of conservation of mass and Darcy’s law for flow
through porous media are applied in each region. The resulting equations are
nondimensionalized and are solved to yield the flow-front shape and the
development of the saturated region with time. The flow-front shape and the
time to fill the length D of the preform are given in equations (3), (4), and (5),
respectively:
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The nomenclature used is summarized in Table 1. The variation of the flow-front
shape with different numbers of fabric layers in the fiber preform in the
structural layer is shown in Figure 4. A parametric study of the length of flow-
front region (d) demonstrating the effect of the change in permeability of the

distribution medium is shown in Figure 5.

Analytical predictions of the length of the saturated region (D) with time, the
length of the flow-front region (d), and the shape of the flow front, he(x), are
compared to experimental measurements of these parameters as a function of the
preform thickness in the next section. '



Table 1. Nomenclature used in the analytical model.

he(x") | Flow-front shape as a function of distance from the saturated region, x*
t-to Time to fill saturated length D of the part

D Length of saturated region

d Length of flow-front region

Ur Flow-front velocity

U> Flow velocity in saturated region in the preform layer

D, Porosity of the distribution medium

Q, Porosity of the fiber preform

K, Permeability of distribution layer in the direction of flow

K,. Permeability of preform layer in the direction of flow

K,, Permeability of preform layer in the direction transverse to the flow
M Viscosity of the resin

4. VARTM Test Bed: Description of the Experimental
Setup

The VARTM test bed [11, 12] (Figure 6) has been established to allow for sensing
and control of the important process parameters. In particular, monitoring of the
resin arrival times and flow rates as well as tight control of the applied vacuum
levels is needed to study the resin-flow behavior during preform impregnation
and to validate process models. The vacuum control system consists of a
TESCOM ER3000 pressure controller, a VACCON VDF250 variable-flow vacuum
pump (venturi pump), and a VACOON VSSA vacuum sensor for each individual
vent. A separate air compressor is needed due to the high flow rates required by
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predicted by the analytical model, for different values of permeability of the
distribution medium (a typical permeability value for the distribution medium
is 7.05E-05).



Figure 6. The UD-CCM VARTM workeell that incorporates sensors and enables flow
model validation and VARTM automation.

the venturi pumps to maintain the desired inlet pressure at each pressure
controller. The pressure controller adjusts the pressure to the venturi pump that
generates vacuum. The vacuum level is measured in-situ with the vacuum
sensor and is used in a feedback loop to adjust the pressure controller. Together,
this system provides accurate and fast control over the vacuum level in the
vacuum tank and in the preform near the vent location. A graphical user
interface (GUI) written in LABVIEW gives easy access to the control variables
and sensor feedback.

Two systems are employed to accurately monitor the resin-flow behavior. A
PULNIX TM-1001 charge-coupled device (CCD) camera captures in real time the
resin flow on the preform surface. Each individual picture is preprocessed to
reduce the pixel noise, and subsequently a threshold algorithm is applied to
calculate the wet-out location in the preform. An arrival time map is
continuously updated and can be used on-line or off-line to calculate the resin
position over time. A second monitoring system is based on the SMARTweave
[3, 4] technology. An orthogonal grid of wires (sense and excitation lines) is used
" to sense the flow-front location. The resistance at each grid point between one
excitation and one sense is measured using a voltage-divider system and a data-
acquisition board from National Instruments. The junction resistance drops
significantly upon resin arrival and indicates the preform wet-out at each
location. The current US. Army Research Laboratory (ARL)/UD-CCM
SMARTweave system enables point sensors to be multiplexed within a 64 x 64
sensor grid. Multiple grids are placed between different layers of the preform to
enable 3-D flow monitoring during impregnation.




5. Experimental Procedures

The experimental work consisted of two parts: (1) the measurement of model
input properties such as the permeabilities of the preform and distribution media
and (2) flow-front measurement with varying preform thickness to validate
model predictions. The material properties required by the model include the
permeabilities and porosities of the structural layer (ie., fiber preform
[Kaxx, Kayy, 2], the distribution medium [Kix, ®1], and the resin [u]). The resin
used in this study was Dow Derakane 411-C50 vinyl ester, while the fiber
preform and the distribution layer were made up of 24-oz 52-glass-woven roving
fabric and a single layer of shading material from Roxford Fordell, respectively.
Permeability-measurement experiments were conducted to measure the
permeabilities using the test bed [13]. The porosities were determined using the
standard ASTM burn-off test [14].

5.1 3-D Preform Permeabilities

The permeability tensor of the fiber preform has three principal values, ki, k2, and
ks. In earlier work, a method to predict all three principal components in one
experiment using SMARTweave was developed [13]. This method was used to
determine the preform permeability values required for this study. For the
material used here (24-0z S2-glass-woven roving fabric), the x, y, and z directions
coincide with the principal directions. In the experiment to measure these
values, 10-20 layers of the preform were placed under vacuum, without the
distribution medium. A number of SMARTweave layers were used at regular
spacing between the layers. Bare copper wires were used to minimize the
interference on the flow front and a video camera recorded the flow front on the
surface of the fiber preform. The data is obtained by the SMARTweave system in
this experiment at the nodes of the intersecting grid of wires. The times when
the flow front reaches the coordinates of each node (x, y,f.z,.',t,.) were recorded.
According to the theory, one can relate the arrival times with the preform
permeability as detailed by Nedanov et al. [13]:

tﬁ",i :f(klvkzxk:)»k)

where

1
k= (klk2k3 )} . )

These nonlinear equations are solved to obtain the values of ki, k2, and ks. The
central-injection method was used to inject resin into the preform. An inhibitor
was used to prevent the premature cure of the resin. The data from the
experiment consisted of the flow rate, the video of the flow front on the surface,
and the time to reach each SMARTweave node through the thickness.
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Additional data include the resin properties (density, viscosity), the size of the
injection tube, and the level of vacuum used.

5.2 Permeability of Distribution Medium

The permeability of the distribution medium was measured using an
-independent 1-D flow experiment. The distribution medium was placed under
vacuum and the resin injected into a line-injection source at one end. A video of
the flow-front progression with time was used for determining the permeability.
The distance traveled by the flow with time was recorded and the permeability
determined using the 1-D flow equation:

ux;
K =1t
s = % % AP @

This experiment was repeated with additional layers of the distribution medium
and the corresponding permeability was determined. Three 40-in-long sections
with one, two, and three layers of the distribution media were bagged and
injected using vinyl ester 411-C50 resin. The 40-in-long panel spans 650 pixels of
each image, resulting in a resolution of approximately 0.06 in per pixel. The
arrival times of the resin for each image pixel were determined from the video of
the flow front. Equation (7) is applied to calculate the permeability of the
distribution media. The permeability values are tabulated in Table 2.

Table 2. Measured material properties of fiber preform and distribution medium.

Ky 7.00E-05 m?2
Ko 3.63E-07 m?2
Ky, 9.20E-09 m?2
D, 0.9

@, 0.5

M 85 cP

5.3 Porosities of Fiber Preforms and Distribution Media

Since the volume fractions (and preform porosities, @1 and @) of the materials
change under compaction by vacuum, it was necessary to estimate them using
the fabricated panels. The standard ASTM burn-off test [14] was used to
determine the volume fractions of the fiber preforms and distribution medium.

5.4 Flow Experiments With Varying Preform Thickness
Flow experiments were conducted to measure the following:

(1) time to fill a particular length of composite (t-to),
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(2) length of flow front region (d), and
(3) shape of flow front (A, (x")).

In these experiments, preform thickness was varied by increasing the number of
layers of fiber preform (6, 9, 15, 30, and 40 layers). Three-dimensional flow
information was generated from the CCD camera that records the flow front at
the top surface and the SMARTweave embedded at regular intervals throughout
the thickness. In general, flow-front information is measured at a minimum of
three locations through the thickness of the fiber preform.

Five different composite panels were manufactured with 6, 9, 15, 30, and
40 layers of 24-oz woven-fabric 52-Glass. One layer of shading material from
Roxford Fordell was used as the distribution media. The dimension of each
panel was 40 in long and 6 in wide. Twenty-one excitation lines at 2-in spacing
were placed on top of the distribution media (parallel to the resin flow front),
and 1 sense line was placed at mid-width (perpendicular to the resin flow front)
every 3 layers for the 6-, 9-, and 15-layer preforms and 5 layers for the 30- and 40-
layer preforms, respectively (Figure 7). This allowed for accurate through-
thickness flow measurements at up to 168 sensor locations.

Resin Flow Direction >

Ex1 ExS Ex10 Ex15 Ex20
Sﬁ&l ....................A
Sense2
Sensed
Sense5
Sense6 v

< 4° >

| 4

Figure 7. Experimental SMARTweave grid with 21 excitation and 6 sense lines for the
15-layer E-glass preform.

The properties of the materials utilized for the experiments were measured and
the results are summarized in Table 2. It is noteworthy that the permeability of a
single layer of distribution medium is two to four orders of magnitude higher
than that of the preform. The relative magnitudes of the permeabilities clearly
indicate that the path of least resistance is initially in the distribution medium.

12



Furthermore, since Kayy << Kzu << Kix, significant gradients in the flow-front
region are developed with increasing preform thickness.

Using the experimental procedure previously outlined, the resin arrival times
were recorded throughout the preform. Experimental results are presented in
Figures 8-12 for preforms containing 5, 9, 15, 30, and 40 layers, respectively. A
number of observations can be made from these results. The first is that the
overall fill time increases significantly as the preform thickness increases,
ranging from 200 to 1,000 s for the 6- to 40-ply preforms, respectively (the breaks
in Figures 11 and 12 are due to the failure of a line of sensors during the
injection). The fill time is approximately a linear function of the preform
thickness. It was observed that the bottom layer lags behind the resin arrival
time at the top surface due to the presence of the high permeability layer, in all
cases. The lag time also increases significantly with preform thickness,
increasing from 10 s to more than 600 s.

Note that the arrival time for the bottom layer measured experimentally is
equivalent to the time taken to fill the saturated region predicted by the model.
In Figure 13, model predictions are correlated with experimental measurements
over the full range of the preform thickness. The properties of the resin and fiber
preform from Table 1 were used for the comparison. The times to fill the bottom
layer were compared with those computed using equation (3). Overall, the
model accurately predicts the time to fill the preform layer. This also implies
that the independent measurements of the permeabilities, the porosities, and the
resin viscosity were quite accurate as well. For the thicker preform, some
discrepancy is noticed for regions near the inlet where steady state flow may not
have been achieved.

Given the location of flow sensors in the preform, arrival times can be used to
reconstruct the flow fronts. These results are presented in Figures 14 and 15.
Consistent with the description of lag time, the flow front at the bottom lags
behind the flow front at the surface. This lag distance ranges from 3/4 in for the
6-ply preform to more than 24 in for the 40-ply preform. This is a significant
result because standard industrial practice calls for an inlet spacing of 18 in,
which is suitable for thin preforms (where the lag distance is smaller than the
inlet spacing), but it should be reassessed for thick preforms, where the lag
distance is of the same order of magnitude and often larger than the standard
inlet spacing.

The sensor information has been integrated into a complete picture of the resin
flow (Figures 14 and 15) and shows that the flow of resin in the VARTM process
has an initial transition region near the injection location and a steady flow-front
shape thereafter. The variations in the flow-front shape may be caused by local
property variations and also due to the discrete nature of the SMARTweave grid.
The length of the flow front and hence the lag between resin arrivals at the top
and bottom layers shows an increase with the increase in number of layers and,
consequently, with the increase in the thickness of the preform.
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The lag distance, ‘d’, was measured from the experimental data and was
compared to that predicted by the analytical model. The results are presented in
Figure 16. The length of the flow front region also shows a good agreement with
the model predictions. It can be observed that the length observed from the
experiment is always less than that predicted by the model. This is because the
model divides the flow into two separate regions—the flow-front region and the
saturated region, whereas, there are transition regions at the injection location
and between the flow-front and saturated regions, as demonstrated by
simulation studies [2]. In effect, the model incorporates the mass flow in these
transition regions into the flow-front region, thus over-estimating the length of
the flow-front region. The locations of the flow front at any given time were
tracked from the experimental data and compared with those predicted by the
analytical model. In Figure 17, the locations of the flow-front profile from
experiment and those of the model are plotted for each case study used in the
experiment. It can be observed that the flow-front locations from the
experiments are always less than those predicted by the model for any given
x*/d (model). This is due to the overestimation of the length of flow-front region
by the analytical model. Also it can be observed that the experimental data is
closer to the flow front predicted by the analytical model, as the number of layers
of preform increase. This is because, in the development of the model, it was
assumed that the thickness of the distribution medium is significantly smaller
than that of the structural (fiber preform) layer. As the number of layers of fiber
fabric within the preform increases, the accuracy of the analytical model
increases and hence the better match between experimental flow front data and
the model predictions.
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Figure 16. Length of flow region: comparison of model prediction with experimental
observations for different number of layers of front-fiber preform.
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Figure 17. Flow-front profile through the thickness: comparison of model predictions
with experimental data for different number of layers of fiber preform.

The experimental data has clearly demonstrated that as the thickness of the
structural layer increases, the length of the flow front and the lag time between
the top and bottom of mold increases significantly. This has important
consequences for the manufacture of large parts by VARTM where a number of
injection lines are used in sequence to fill sections of the part. Each line is
activated when the resin flow reaches it. Hence, if the resin at the bottom layer
lags behind the flow at the top layer, the injection line gets activated prematurely
since the section of the fiber preform lying below the injection line is not wetted
out. If the lag is large for thick parts, as the experiments demonstrate, there may
be formation of “dry spots” or areas that are not fully wetted out because the
resin races ahead in the top layer. In order to avoid this problem, the injection
lines in the sequential injection of large parts have to be spaced in an optimal
manner. Since the bottom layer of the preform cannot be viewed, it is necessary
to use a sensor-based control strategy to ensure that each injection line is
activated only when the flow front has reached the bottom layer immediately
below the line. Hence, these results are also significant because they
demonstrate that the closure of inlets based on surface-flow monitoring may
result in significant dry-spot formation and thus make a strong case for the need
for on-line sensing, control, and optimization of the VARTM process.
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6. Conclusions

An experimental study of the resin flow during the VARTM process was
undertaken using a VARTM test bed, and the results were compared with an
analytical model. The test bed was used to measure the properties of the fiber
preform and the flow of resin through the thickness and along the length of the
part, using a SMARTweave sensor grid. Experiments were performed using five
parts with different numbers of layers of fiber preform. The experiments show
that the resin flow in the VARTM process has a steady flow-front shape away
from the injection location and that there is a steady lag between the resin flow
front at the top and the bottom layers, which increases with the thickness of the
preform. The times of arrival at the bottom layer, the length of the flow-front
region, and the shape of the flow front were compared to the predictions from
the analytical model developed in earlier work and show good agreement. The
experiments have yielded a portrait of through-thickness resin flow in VARTM
in detail for the first time and demonstrated the need for process optimization
and on-line sensing and control, especially in the sequential injection of large
parts.
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technical content, format, etc.)
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